Theoretical Study of the Local Lattice Distortion at the Trigonal Cr^{3+} Center in BiI_3

Shao-Yi Wu^{a,b}, Xiu-Ying Gao^a, and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **61a**, 78 – 82 (2006); received August 8, 2005

The local lattice distortion at the trigonal Cr^{3+} center in BiI₃ is theoretically studied by the perturbation formulas of the EPR parameters for a $3d^3$ ion in trigonal symmetry, based on the cluster approach. In these formulas the contributions from the s-orbitals of the ligands, which were often ignored, are taken into account. It is found that the local angle β (between the direction of the impurity-ligand bonding R and the C_3 axis) in the impurity center is smaller than the host angle β_H in the pure crystal. The calculated EPR parameters are improved compared to those in absence of the ligand s-orbital contributions. The local lattice distortion obtained in this work is discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Cr³⁺; BiI₃.